• 李力

    研究员,博士生导师。北京大学学士,军事医学科学院博士,英国牛津大学博士后,曾任军事医学科学院助理研究员,中国科学院副研究员。在Nat GenetCancer Cell Nat Cell BiolGutHepatologyNat Commun(x4)、Genes DevPNAS等国际著名期刊发表40多SCI论文。其中以第一或通讯作者发表28篇,累计影响因子大于300。目前担任国际学术期刊Bosnian J Basic Med编委,《生物医学工程学进展》杂志青年编委,Adv. Sci.Cancer Lett.Transl Oncol特约审稿人。

     

    Tel: 021-62933629

    E-mail: lil@sjtu.edu.cn


教育背景

1999,北京大学学士

2005,军事医学科学院博士

工作经历

2005-2008,军事医学科学院,助理研究员

2009-2011,英国牛津大学,博士后

2012-2015,中国科学院上海高等研究院/上海生命科学研究院,副研究员

研究方向

肿瘤和发育相关疾病的发生机制和干预手段,干细胞器官修复,表观遗传学,疾病动物模型。

近年来的研究工作围绕“组蛋白修饰与疾病”展开,在分子和细胞水平上构建了可靠的功能实验系统,重点研究了组蛋白修饰相关分子在多种疾病和发育中的作用,并构建了多个疾病动物模型,结合动物整体表型和临床样本分析,回答肿瘤和发育相关重大疾病的分子机理问题,为进一步研究这些疾病的分子机制与诊断治疗提供了良好的理论基础和有潜力的靶点。

科研项目

作为负责人承担2项科技部重大新药创制,5项国家自然科学基金委青年和面上项目,3项上海市科委基金,2项国家重点实验室开放课题,1项betway必威西汉姆联官网医工交叉基金,1项教育部留学归国人员启动基金和4项企业横向课题,并作为骨干参与2国家重点研发计划,1项国家自然基金重点项目和1项上海市科委重点项目。

代表性论文专著

1.      Xu Y, Ma C, Wang Z, Feng W, Zhang W, Liu N, Aji R, Gao WQ*, Li L*. Epithelial NSD2 maintains FMOs-mediated taurine biosynthesis to prevent intestinal barrier disruption. (*Co-corresponding author, submitted to J Cell Biol.)

2.      Feng W#, Liu N#, Liu C, Rao H, Zhang W, Xu Y, Aji R, Wang Z, Gao WQ, Li L*. NSD2 promotes the transition from polycystic kidney disease to tubulocystic renal cell carcinoma through activating the integrin/FAK/AKT signaling. (*Corresponding author, submitted to Cancer Res.)

3.      Fu L#, Kuerban A#, Han W#, Hu D#, Shi C, Chen K, Chen H, Hu X, Wang X, Wang X, He J, Zhang L, Zhuang T, Shi K, Ouyang K, Li J, Bao Z, Shou W, Li L*, Qu X*, Cai CL*, Ye M*. Deficit of hepatocellular 1 SETD2-mediated histone methylation predisposes to abdominal aortic aneurysm. (*Co-corresponding author, submitted to Nat. Cardiovasc. Res.)

4.      Feng W#, Niu N#, Lu P, Rao H, Chen Z, Zhang W, Ma C, Liu C, Xu Y, Gao WQ, Xue J*, Li L*. Multilevel regulation of NF-κB signaling by NSD2 suppresses Kras-driven pancreatic tumorigenesis. Adv. Sci. (Weinh). 2024: e2309387. (*Co-corresponding author)

5.      Rao H, Liu C, Wang A, Ma C, Xu Y, Ye T, Su W, Zhou P, Gao WQ, Li L*, Ding X*. SETD2 Deficiency Accelerates Sphingomyelin Accumulation and Promotes the Development of Renal Cancer. Nat. Commun., 2023; 14(1): 7572. (*Co-corresponding author)

6.      Feng W#, Ma C#, Rao H, Zhang W, Liu C, Xu Y, Aji R, Wang Z, Xu J, Gao WQ, Li L*. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Cancer Lett., 2023; 579: 216470. (*Corresponding author)

7.      Ma C, Liu M, Feng W, Rao H, Zhang W, Liu C, Xu Y, Wang Z, Teng Y, Yang X, Ni L, Xu J, Gao WQ, Lu B*, Li L*. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signaling pathway. Clin. Transl. Med., 2023; 13(11): e1475. (*Co-corresponding author)

8.      Liu C#, Ni L#, Li X, Rao H, Zhu Y, Feng W, Zhang W, Ma C, Xu Y, Gui L, Wang Z, Aji R, Xu J, Gao WQ, Li L*. SETD2 deficiency promotes renal fibrosis through the TGF-β/Smad signaling pathway in the absence of VHL. Clin. Transl. Med., 2023; 13(11): e1468. (*Corresponding author)

9.      Ding Z#, Cai T#, Tang J, Sun H, Qi X, Zhang Y, Ji Y, Yuan L, Chang H, Ma Y, Zhou H, Li L*, Sheng H*, Qiu J*. Setd2 supports GATA3+ST2+ thymic-1 derived Tregs and suppresses intestinal inflammation. Nat. Commun., 2022; 13(1): 7468. (*Co-corresponding author)

10.   Chang J, Ji X, Deng T, Qiu J, Ding Z, Li Z, Ma Y, Hu X, Li L*, Qiu J*. Setd2 determines distinct properties of intestinal ILC3 subsets to regulate intestinal immunity. Cell Rep., 2022; 38(11): 110530. (*Co-corresponding author)

11.   Chen Y, Liu M, Wang W, Li L*, Lin GN*. Loss of Setd2 associates with aberrant microRNA expression and contributes to inflammatory bowel disease progression in mice. Genomics, 2021; 113(4): 2441-54. (*Co-corresponding author)

12.   Liu M, Rao H, Liu J, Li X, Feng W, Gui L, Tang H, Xu J, Gao WQ*, Li L*. The Histone Methyltransferase SETD2 Modulates Oxidative Stress to Attenuate Experimental Colitis. Redox Biol., 2021; 43: 102004. (*Co-corresponding author)

13.   Rao H, Li X, Liu M, Liu J, Feng W, Tang H, Xu J, Gao WQ*, Li L*. Multi-level regulation of β-catenin activity by SETD2 suppresses the transition from polycystic kidney disease to clear cell renal cell carcinoma. Cancer Res., 2021; 81(13): 3554-67. (*Co-corresponding author)

14.   Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, Feng W, Tang H, Xu J, Gao WQ, Li L*. Setd2 Epidermal Deficiency Promotes Cutaneous Wound Healing via Activation of AKT/mTOR Signaling. Cell Proliferat., 2021; 54(6): e13045. (*Corresponding author)

15.   Li Y#, Tang H#*, Chen F#, Chen J, Wang H, Chen Z, Duan Y, Wang X, Li L*, Ouyang K*. SETD2 is essential for terminal differentiation and enucleation of erythroblasts during fetal erythropoiesis. Biochem. Bioph. Res. Co., 2021; 552: 98-105. (*Co-corresponding author)

16.   Chen F, Chen J, Wang H, Tang H, Li Y, Huang L, Wang X, Fang X, Liu J, Li L*, Ouyang K*, Han Z*. Histone lysine methyltransferase SETD2 regulates coronary vascular development in embryonic mouse hearts. Front. Cell Dev. Biol., 2021; 9: 651655. (*Co-corresponding author)

17.   Wang W, Zhao J, Song W, Li L* and Lin GN*. Alternatively splicing interactomes identify RPL10 as a novel isoform-specific partner for NSD2. Front. Cell Dev. Biol., 2021; 9: 612019. (*Co-corresponding author)

18.   Li XJ, Li QL, Ju LG, Zhao C, Zhao LS, Du JW, Wang Y, Zheng L, Song BL, Li LY, Li L*, Wu M*. Deficiency of Histone Methyltransferase SET Domain-Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC. Hepatology, 2021; 73(5): 1797-815. (*Co-corresponding author)

19.   Liu J#, Feng W#, Liu M, Rao H, Li X, Teng Y, Yang X, Xu J, Gao WQ, Li L*. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mTOR signaling. Bosnian J Basic Med., 2020; 21(4): 434-46. (*Corresponding author)

20.   Rao H#, Li X#, Liu M, Liu J, Li X, Xu J, Li L*, Gao WQ*. Di-Ras2 Promotes Renal Cell Carcinoma Formation by Activating the Mitogen-Activated Protein Kinase Pathway in the Absence of von Hippel-Lindau. Oncogene, 2020; 39(19): 3853-66. (*Co-corresponding author)

21.   Niu N#, Lu P#, Yang Y, He R, Zhang L, Shi J, Wu J, Yang M, Zhang ZG, Wang LW, Gao WQ, Habtezion A, Xiao GG, Sun YW*, Li L*, Xue J*. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut, 2020; 69(4): 715-26. (*Co-corresponding author)

22.   Liu M#, Sun T#, Li N, Peng J, Fu D, Li W, Li L*, Gao WQ*. BRG1 Attenuates Colonic Inflammation and Tumorigenesis through Autophagy-dependent Oxidative Stress Sequestration. Nat. Commun., 2019; 10(1): 4614. (*Co-corresponding author)

23.   Ji Z, Sheng Y, Miao J, Li X, Zhao H, Wang J, Cheng C, Wang X, Liu K, Xu L, Yao J, Shen L, Hou J, Zhou W, Sun J*, Li L*, Gao WQ*, Zhu HH*. The histone methyltransferase Setd2 is indispensable for V(D)J recombination. Nat. Commun., 2019; 10(1): 3353. (*Co-corresponding author)

24.   Xu Q#, Xiang Y#, Wang Q#, Wang L#, Brind’Amour J, Bogutz AB, Zhang Y, Zhang B, Yu G, Xia W, Du Z, Huang C, Ma J, Zheng H, Li Y, Liu C, Walker CL, Jonasch E, Lefebvre L, Wu M, Lorincz MC, Li W*, Li L*, Xie W*. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet., 2019; 51(5): 844-56. (*Co-corresponding author)

25.   Wang L#, Niu N#, Li L#, Shao R, Ouyang H, Zou W*. H3K36 trimethylation mediated by SETD2 regulates the fate of bone marrow mesenchymal stem cells. PLoS Biol., 2018; 16(11): e2006522. (#Co-1st author)

26.   Zuo X#, Rong B#, Li L#, Lv R, Lan F*, Tong MH*. The histone methyltransferase Setd2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol. Chem., 2018; 293(24): 9188-97. (#Co-1st author)

27.   Sun L, Li B, Su X, Chen G, Li Y, Yu L, Li L*, Wei W*. A Ursolic Acid-derived Small Molecule Triggers Cancer Cell Death Through Hyperstimulation of Macropinocytosis. J Med. Chem., 2017; 60(15): 6638-48. (*Co-corresponding author)

28.   Shi Y, Sun L, Chen G, Zheng D, Li L*, Wei W*. A combination of the telomerase inhibitor, BIBR1532, and taxol synergistically inhibit cell proliferation in breast cancer cell lines. Target. Oncol., 2015; 10(4): 565-73. (*Co-corresponding author)

29.   Li L#, Wang D#, Xue M#, Mi X, Liang Y, Wang P*. 3'UTR shortening identifies high-risk prostate cancers with targeted dysregulation of ceRNA netwok. Sci. Rep., 2014; 4: 5406. (#Co-1st author)

30.   Mould A#, Morgan MA#, Li L#, Bikoff EK, Robertson EJ*. Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes Dev., 2012; 26(18): 2063-74. (#Co-1st author)

31.   Li L#, Deng B#, Xing G, Teng Y, Tian C, Cheng X, Yin X, Yang J, Gao X, Zhu Y, Zhang L*, Yang X*, He F*. PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proc. Natl. Acad. Sci. USA., 2007; 104(19): 7951-6. [Comment: PACT regulates p53 controlled network of genes. Proc. Natl. Acad. Sci. USA., In this issue, 2007; 104(19): 7731-2] (#Co-1st author)

32.   Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, Qiu T, Pan Q, Chen Q, Zhang G, Zang Y, Tan M, Zhang J, Li Q, Wang X, Jiang J, Qin J. SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell., 2020; 38(3): 350-65.e7.

33.   Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L*, He F*. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat. Cell Biol., 2009; 11(5): 580-91.

34.   Lu K#, Yin X#, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L*, He F*. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat. Cell Biol., 2008; 10(8): 994-1002.

教学工作

博士核心课程"分子纳米医学工程"

betway必威西汉姆联官网"人类疾病动物模型"

致远学院"生物化学"



荣誉奖励

betway必威西汉姆联官网教学成果二等奖(2023年

北京市科学技术一等奖(2017

北京细胞生物学会首届青年优秀论文二等奖(2009

中国细胞生物学学会第九次会员代表大会青年优秀论文三等奖(2007

联系方式

邮箱地址:lil@sjtu.edu.cn

联系电话:86-21-62933629

办公地址:Med-X Institute 502